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ABSTRACT 

 

 

In this study, catalysts consisting of ruthenium (Ru95%) and cobalt (Co5%) supported on carbon nanotubes (CNTs) 

were prepared using the NaBH4 reduction method. After the Ru-Co/CNT catalysts were prepared, an efficient and 

sensitive electrochemical sensor was developed using glassy carbon electrode (GCE) modified with Ru-Co/CNT 

catalysts. The electrochemical behavior of Ru-Co/CNT-modified GCE electrodes was investigated using cyclic 

voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical results show that the GCE 

electrode modified with Ru-Co/CNT has a sensitivity of 0.009 mA/cm2.mM, limit of detection (LOD) 0.06 µM a 

limit of quantification of (LOQ) 0.18 µM for threonine. In conclusion, the results show that the Ru-Co/CNT-

modified GCE electrode has been synthesized for the first time in the literature and is a promising catalyst for the 

sensitive detection of threonine. 
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INTRODUCTION 

 

 

Amino acids are essential for important processes in the body, such as the synthesis of proteins, hormones, and 

neurotransmitters (Nelson DL, 2005).  Amino acids are organic molecules that contain an amino, carboxyl, and side 

chain in their structure. Amino acids exist in two forms: D and L forms. Generally, amino acids are found in the L 

form, but the appearance of the D form can be a sign of aging or disease, which is considered a negative condition 

(Minami et al, 2013). There are an average of 20 amino acids; they are divided into two different groups: essential 

and non-essential amino acids. Essential amino acids can not be synthesized metabolically by the body and are 

obtained externally through the diet. Essential amino acids consist of isoleucine, leucine, valine, lysine, methionine, 

phenylalanine, threonine, and tryptophan. Non-essential amino acids can be produced naturally by the body. Non-
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essential amino acids include cysteine, asparagine, alanine, arginine, aspartic acid, glutamic acid, glutamine, glycine, 

proline, serine and tyrosine (Silva et al. 2012).  

Threonine is an essential amino acid and its molecular formula is C4H9NO3. Threonine, ensures the normal 

functioning of the human organism, especially the functioning of the immune, central nervous and cardiovascular 

systems, and also participates in the production of muscle tissue, collagen and elastin 8 Vukstich et al. 2022).  It also 

plays a role in the synthesis of Glycine and Serine amino acids. This amino acid ensures the formation of strong 

bone and tooth enamel structure, and also supports the immune system and ensures rapid recovery after trauma 

(Tsuzuki, T., Harper, D.O. and Hunt, H., 1958; Wu et al, 1993). Today, as a result of the increasing interest in the 

diagnosis and treatment of diseases, new methods for amino acid analysis have been developed. Today, the most 

used methods to detect and characterize amino acids are based on spectroscopic (Lee et al. 2015), chromatographic 

(Wang, J., Chatrathi, M.P. and Tian, B., 2000),  or electrochemical approaches (Vardanega, D. and Girardet, C., 

2009).A variety of electrode materials have been used to increase the electrochemical selectivity of carbon-based 

electrodes for aminoacids in a wide range of electrochemical sensor studies in the literature due to its lower 

background current, low cost, chemical inertness, and wide potential range (Kazici, H., Salman, F. and Kivrak, H. 

2017). Electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and 

electrochemical impedance spectroscopy (EIS) are highly sensitive and selective with low detection limits. In 

general, each method has advantages and disadvantages, and the choice of method depends on the specific 

application and requirements for amino acid detection. 

Many electrochemical sensor studies have been conducted in the literature on glucose (Tian, K., Alex, S., Siegel, G. 

and Tiwari, A., 2015), amino acid (Gumerov et al.2022), hydrogen peroxide (Kazıcı et al. 2018), and cancer 

biomarkers (Ferhan et al, 2018). For amino acid detection, electrochemical sensor studies involve modification of 

electrodes with amino acid-specific catalysts such as carbon nanotubes, metal nanoparticles, nanopolymers, and 

nanocomposites that enhance the electrochemical response to the amino acid (Imanzadeh  et al. 2023). Table 1 

summarizes the nanomaterials used in electrochemical sensor studies in the literature, their aminoacid, linear range, 

limit of detection (LOD), and limit of quantification (LOQ).  

 

Table 1. Electrochemical sensors based on nanomaterials available in the literature  

for the determination of amino acids. 

 
Aminoacid Electrode Linear range LOD/LOQ Ref 

tryptophan Nano-MIP/MWCNTs-

GCE 

0.06–0.4 µM 0.0071 / 0.021 µM (Alizadeh, T. and 

Amjadi, S., 2017) 

methionine CuO NFs/GCE 1.0–300 µM 0.3/0.9 µM (Ziyatdinova, G. and 
Gimadutdinova, L., 2023) 

histidin HRP/GNPs-Thi/Chit-GCE 0.01–103 ng/mL 3.3/9.9 pg/mL (Ren, R., Lu, D. and 

Pang, G., 2020) 

L-serine Ni−NiO HNT/BDDE 0.2–6.54 µM 0.1/0.3 µM (Dai, et al.2015) 

L-cysteine Mo/CNT/GCE 0–150 µM 0.20./0.60 μM (Selçuk, K., Kivrak, H. 

and Aktaş, N., 2021) 

Threonine Ru-Co/CNT 100–500 mM 0.06/0.018 µM This study 

 

In this study, CNT-supported Ru-Co catalysts were first synthesized by sodium borohydride (NaBH4) reduction 

method. For electrochemical measurements, GCE was modified with Ru-Co/CNT catalysts, and the electrochemical 

behavior of the modified GCE was determined by CV, and EIS. Finally, sensitivity, interference, and selectivity 

measurements were performed on GCE electrodes modified with Ru-Co/CNT, and as a result, LOD and LOQ values 

were obtained. 

 

EXPERIMENTAL 

 

1. The synthesis of RuCo/CNT catalyst 

The sodium borohydride reduction method was used for catalyst synthesis. The distilled water, Ru precursor 

(RuCl3.3H2O), and Co precursor (Co(CH3COO)2) were first added into a beaker and kept in an ultrasonic bath until 

homogeneously dispersed. CNT was added as a support material onto metal precursors dispersed homogeneously in 

distilled water. This prepared mixture was mixed in the ultrasonic bath and the magnetic stirrer for approximately 2 

hours. Finally, sodium borohydride (30 equiv.) was added to this mixture as a reducing agent and stirred for another 

hour. It was filtered, washed, and dried at 85 °C for approximately 12 hours. 
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2. Electrochemical studies 

Electrochemical studies were carried out on the Ru-Co/CNT bimetallic catalyst by CV and EIS. The effect of amino 

acid concentration, scan rate, and pH was investigated by CV  on Ru-Co/CNT bimetallic catalysts on GCE 

electrode. Sensitivity of electrodes for threonine detection was defined using EIS. All electrochemical measurements 

were performed using a three-electrode system using a CHI 660E potentiostat. Glassy carbon (GCE) was used as the 

working electrode, (Ag/AgCl) and Pt wire ternary system were used as the reference electrode, respectively. By 

dispersing 5 mg bimetallic catalyst in 0.5 mL of nafion, a nanocatalyst ink was obtained and 3 μl of bimetallic 

catalyst ink was transferred on GCE and dried. Consequently, Ru-Co/CNT modified GCE electrodes were obtained. 

CV measurements were performed on the Ru-Co/CNT  modified electrode, 0.1 M PBS +5 mM threonine solution at 

different pHs (pH:5.5, pH:7.2, pH:10.5) were obtained in the (-1V/1V) range at room temperature (scan rate = 100 

mV s− 1). Following the pH effect study, the effect of concentration on the electro-oxidation of threonine on the GCE 

electrode modified with bimetallic Ru-Co/CNT was investigated. Cyclic voltammograms 5mM threonine  in PBS 

(pH = 7.2)  at 10-100 mV s− 1 scan rates to define the scan rate effect towards threonine electro-oxidation.  

 

 

RESULT AND DISCUSSION 

 

 

The modified Ru-Co/CNT catalyst system was used to modify a GCE for measuring threonine. The performances of 

the electrooxidation of threonine amino acid were examined on the modified GCE electrode in 0.1 M PBS at three 

different pH levels. It was observed that the current was better at pH: 7.2 for threonine amino acid. (Figure 1). 

 

 
 

Figure 1. Cyclic Voltammograms obtained at pH=5.5, pH=7.2, pH=10.5 in a) 0.1 M PBS + 5 mM  

 

Threonine, solution at 100 mV/s scan rate on Ru-Co/CNT  modified GCE electrode. 

Ru-Co/CNT modified GCE electrode was used to investigate threonine concentration effect on electrooxidation 

activity. Two different concentrations (0 and 5 mM) were tested to determine the current density of threonine  

electrooxidation, presented in Figure 2. The findings showed that the current density values for electrooxidation of  

threonine amino acid gave the best current at 5 mM concentration. 

 

 
 

Figure 2. Cyclic Voltammograms obtained at various threonine concentrations (0-5 mM) in 0.1 M PBS (pH=7.2) 

solution at 100 mV/s scan rate on Ru-Co/CNT modified GCE electrode. 
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Threonine on a GCE electrode modified with Ru-Co/CNT using CV. Figure 3 presents the results showing that the 

electrochemical oxidation current of threonine  increases in direct proportion to the scan rate. This can be explained 

by the emergence of diffusion-controlled formation. To evaluate the effectiveness of the electrode's electroactive 

surface area, the researchers used CV to measure it at various scan rates ranging from 10 to 500 mV/s in a phosphate 

buffer solution (Figure 3b). They used the Randles-Sevcik equation to calculate the effective surface area, solution 

concentration, square root of scan rate, phosphate diffusion coefficient, and number of electrons. The results showed 

that the electrode had an effective surface area of (R² = 0.90).  

 

-1,0 -0,5 0,0 0,5 1,0

0,0

0,5

1,0

C
ur

re
nt

(m
A

/c
m

2 )

Potantial(V vs Ag/AgCl)

 10mV

 30mV

 50mV

 80mV

 100mV

a)

 

y = 0,0129x + 0,4
R² = 0,9021

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20 25

V1/2(mV/s)1/2

C
u
rr
e
n
t(
m
A
/c
m

2 b)

V1/2(mV/s)1/2

C
u
rr
e
n
t(
m
A
/c
m

2 b)

 

 

Figure 3. Cyclic Voltammograms on Ru-Co/CNT modified GCE electrode in 0.1 M PBS (pH=7.2) + 5 mM 

threonine solution at different scan rates (10, 30, 50, 80, 100, mV/s),b) linear regression of peak currents vs the 

square root of scan rates. 

 

The EIS method is used to determine the electrode capacitance on the electrode, determine the charge transfer 

resistance, and reveal the diffusion properties simultaneously (Sahin, O., Duzenli, D. and Kivrak, H., 2016). The 

Nyquist plot for EIS consists of semicircular and linear parts. The semicircular part shows the charge transfer, while 

the linear part shows the diffusion controlled process. 

As seen in Figure 4a, the uptake of Ru-Co/CNT-modified GCE and threonine electrooxidation in the solution 

prepared in 0.1 M PBS and 5 mM threonine shows that it has the best charge transfer resistance at 0.2V. In Figure 

4b, the charge transfer resistance of 0.1M PBS and 5mM threonine at different concentrations at 0.2V was examined 

and the best charge transfer resistance was shown at 1000mM. 

In Fig. 4c, the Ru-Co/CNT-based threonine sensor showed a current sensitivity of 0.0009 mA/cm2,mM, and  (LOD) 

0,06 µM and (LOQ) value  0,18μM. In Figure 4d, the charge transfer resistance (Rct) values of the Ru-Co/CNT 

modified GCE electrode in 1000 mM (371.8 Ω) > 750 mM (361.6 Ω) > 500 mM (331.1 Ω) > 400 mM (314.3 Ω ), > 

250 mM (244.6 Ω), > 100 mM (228.9 Ω), > 50 mM (228.3 Ω), 25 mM (218.5 Ω), > 10 mM (213.9 Ω), > 5 mM (206 

Ω) was found from the different concentration equivalent circuit model. Since the 5mM concentration has the lowest 

semicircular shape and Rct, it has the highest carrier transfer performance compared to other potentials. 
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Figure 4.a) Electrochemical impedance spectrum and equivalent circuit model at different potentials of Ru-Co/CNT 

modified GCE electrode at 0.1 M PBS (pH 7.2) + 5 mM threonin, b) Concentration comparison of 0.1M PBS (pH 

7.2) + 5 mM threonine at 0.2V, c) Linear regression of maximum current versus threonine  concentration, d) Rct 

value in 0.1M PBS (pH 7.2) + 5 mM threonine at 0.2V. 

 

 

CONCLUSIONS 

 

 

• The Ru-Co/CNT catalyst was produced by applying the NaBH4 reduction method and modified to contain  

threonine amino acid sensor property. To evaluate the performance of the modified Ru-Co/CNT GCE 

electrode,  including evaluation of detection limits.  

• The NaBH4 reduction method played a critical role in the creation of the sensor of  threoine and gave 

positive results. The Ru-Co/CNT modified GCE electrode showed high sensitivity, stability, and selectivity 

towards  threonine. These new study, the detection of threonine for the first time, contribute significantly to 

the literature 
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