
International Journal of Ecosystems and Ecology Science (IJEES)                           Vol. 15 (1): 31-44 (2025) 

https://doi.org/10.31407/ijees                                                                          https://doi.org/10.31407/ijees15.1 

 

 
31 

 

 

ASSESSMENT OF NUTRIENT POLLUTION TRENDS AND RECOVERY 

FEASIBILITY IN THE TUKAD BADUNG RIVER ECOSYSTEM 
 

 

 

I Made Wahyu Wijaya1*, I GD Yudha Partama1, I Ketut Sumantra2,  

Fransiskus Vebrian Kenedy3  

 

 
1*Regional Planning and Rural Area Study Program, Postgraduate Program, Universitas Mahasaraswati Denpasar, 

Jalan Kamboja No. 11 A, Denpasar, Bali, Indonesia, 80233, Indonesia; 
2Agrotechnology Study Program, Faculty of Agriculture and Business, Universitas Mahasaraswati Denpasar, Jalan 

Kamboja No. 11 A, Denpasar, Bali, Indonesia, 80233, Indonesia;  
3Environmental Engineering Study Program, Faculty of Engineering, Universitas Mahasaraswati Denpasar, Jalan 

Kamboja No. 11 A, Denpasar, Bali, Indonesia, 80233, Indonesia;  

 
*Corresponding Author I Made Wahyu Wijaya, email: wijaya@unmas.ac.id;  

yudhapartama@unmas.ac.id; ketut.sumantra@unmas.ac.id; febriankenedy@gmail.com; 

 

 

Received November 2024; Accepted December 2024; Published January 2025; 

 

DOI: https://doi.org/10.31407/ijees15.104 

 

 

 

 

ABSTRACT 

 

 

The study investigates the fluctuating levels of nitrogen and phosphorus pollutants along the Tukad Badung River, a 

vital water source for neighboring communities challenged by waste influx from various activities within its 

watershed. Conducting bi-daily sampling at six points spanning upstream and downstream areas revealed discernible 

patterns in nutrient concentrations, influenced by both anthropogenic and natural factors. High amounts of total 

suspended solids, ammonia, nitrite, nitrate, total phosphorus, and total nitrogen, especially further downstream and 

in the evening, show how important it is to manage the watershed as a whole to stop nutrient pollution and protect 

river ecosystems. Moreover, the study's insights lend support to the development of nutrient recovery initiatives 

aligned with circular economy principles. These initiatives contribute to resource conservation, environmental 

protection, and sustainable development within and beyond the Tukad Badung River watershed by extracting 

valuable nutrients from stream water for use in fertilizers or bioenergy production. This highlights the critical role of 

adaptive management strategies and circular economy approaches in addressing nutrient pollution and ensuring the 

resilience of river ecosystems for present and future generations. 

 

Keywords: circular economy, nutrient recovery, nutrient trend, stream water, water quality. 

 

 

INTRODUCTION 

 

 

Rivers play a crucial role in supporting several communities globally, serving as vital sources of water for 

household, agricultural, and industrial needs (Khonok et al., 2022; Wu et al., 2023). Nevertheless, the swift process 

of urbanisation and industrialization has resulted in concerning levels of pollution in numerous river systems, posing 

a threat to both the quality of water and the health of ecosystems. The Tukad Badung River, located in the Badung 
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Regency and Denpasar City on the beautiful island of Bali, is currently facing significant pollution issues (Wijaya et 

al., 2023). 

The Tukad Badung River covers an area of around 30 kilometres and has a watershed of 37.7 square kilometres. It is 

an important water source for nearby villages (Nyoman Wiarta et al., 2008). Despite its importance, a constant flow 

of solid and liquid waste from various human activities within its watershed is attacking this crucial resource. The 

increased flow of pollutants, particularly nitrogen and phosphorus compounds, presents a danger to the natural 

balance of the river and the welfare of people downstream (Ciawi et al., 2022). To tackle the complex problems 

caused by river pollution, it is necessary to engage in new and interdisciplinary research efforts (Rey-Martínez et al., 

2024a; Romero et al., 2021). The present study aims to examine the complex interactions of nitrogen and 

phosphorus pollution in the Tukad Badung River, with a particular emphasis on identifying methods for extracting 

nutrients from the stream water. This research programme is driven by a strong dedication to both environmental 

stewardship and the ideals of the circular economy. 

This study is centred around an innovative method for preserving rivers and managing their resources. This project 

aims to explore the patterns of nitrogen and phosphorus levels in stream water and develop innovative methods for 

recovering nutrients. Its goal is to establish a connection between environmental conservation and the sustainable 

use of resources. The innovative component of this endeavour is its investigation of stream water as a source of 

nutrients that can be recovered (Betti & Nurhayati, 2022; Katkaew & Chamchoi, 2024; Li et al., 2024). This presents 

a shift in the traditional view of dirty water as a problem rather than a valuable resource. Moreover, the importance 

of this work is emphasised by the immediate necessity to tackle the increasing difficulties posed by water 

contamination and resource depletion. Given the current state of rivers globally, which is characterised by an 

unparalleled degree of pollution, it is crucial to urgently devise efficient and scalable measures to protect these 

precious ecosystems (Suwarno et al., 2014; Vigiak et al., 2023; Wijaya et al., 2023). This study aims to provide 

practical solutions for reducing pollution and utilising dirty water as a resource for sustainable development by 

combining scientific investigation with effective interventions. The primary goals of this study are to understand 

how nitrogen and phosphorus concentrations change over space and time in the Tukad Badung River and to 

investigate new methods for extracting nutrients from the river water. This project seeks to provide a valuable 

contribution to the growing field of river conservation and sustainable water management, as well as promote the 

concepts of the circular economy worldwide (Díaz et al., 2024; Piash et al., 2021). This will be achieved by 

meticulous data collection, analysis, and experimentation. 

 

 

MATERIALS AND METHODS 

 

 

The methodology employed in this study encompasses a systematic approach to data collection, analysis, and 

experimentation aimed at elucidating nitrogen and phosphorus trends in the Tukad Badung River and exploring 

avenues for nutrient recovery from stream water. The research activities are structured into distinct phases, each 

designed to achieve specific objectives in a methodologically rigorous manner. Prior to commencing fieldwork and 

laboratory experiments, meticulous preparations were undertaken to ensure the smooth execution of the research 

activities. Additionally, a comprehensive inventory of equipment, materials, and personnel was conducted to 

facilitate seamless data collection and analysis throughout the research period. 

 

Sampling Points 

Sampling points were strategically chosen along an 18-kilometer stretch of the Tukad Badung River, segmented into 

upstream, midstream, and downstream zones (Fig.1). This zoning approach enables the capture of spatial variations 

in nutrient concentrations along the river's course. Specifically, six sampling points were designated, with two points 

situated in each zone, ensuring adequate coverage of the river's spatial dynamics. The selection of sampling points 

adhered to established guidelines outlined in Ministerial Regulation No. 01 of 2007, ensuring consistency and 

reliability in data collection. 
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Figure 1.  Sampling points in Tukad Badung River. 

 

Sampling Collection 

Sampling activities were conducted twice daily, at 08:00 am in the morning and at 07.00 pm in the evening, to 

capture diurnal variations in nutrient levels and peak domestic wastewater conditions. At each sampling point, water 

samples were collected using standardized techniques outlined in the SNI 6989.57-2009 standard for surface water 

sampling methods. A total volume of five litres of water was collected from each sampling point during each 

sampling event, ensuring an adequate sample size for subsequent laboratory analysis. 

 

Laboratory Analysis 

Upon collection, water samples were transported to the laboratory for comprehensive analysis of key water quality 

parameters, including total suspended solids (TSS), ammonia (NH3
-), nitrite (NO2

-), nitrate (NO3
-), total nitrogen 

(Total N), total phosphorus (Total P). Spectrophotometric analyses were conducted using state-of-the-art equipment 

and methodologies, ensuring accuracy and precision in the measurement of nutrient concentrations. 

 

Data Analysis 

Data collected from both field sampling and laboratory experiments were subjected to rigorous statistical analysis to 

identify spatial and temporal trends in nitrogen and phosphorus concentrations along the Tukad Badung River. 

Additionally, graphical representations such as maps and trend charts were generated to visualize spatial and 

temporal variations in nutrient concentrations, aiding in the interpretation of research findings. The culmination of 

data analysis and experimentation enabled the interpretation of research findings and the formulation of evidence-

based conclusions. The implications of the observed nutrient trends and the efficacy of nutrient recovery strategies 

were critically evaluated in the context of river conservation and sustainable water management. Insights derived 

from this study contribute to the body of knowledge surrounding nutrient dynamics in river ecosystems and provide 

valuable guidance for policymakers, environmental practitioners, and stakeholders involved in water resource 

management and conservation efforts. 

An examination of nitrogen and phosphorus levels at six specific sampling locations along the Tukad Badung River 

yields useful information about the spatial and temporal changes in nutrient pollution within the river ecosystem. 

The morning sample session at 08:00 am and the evening sampling session at 07:00 pm exhibited clear patterns in 

nutrient levels, indicating fluctuations throughout the day and possible origins of pollution within the watershed. The 

following analysis provides a comprehensive examination of each metric, followed by a discussion of its impact on 

water quality and aquatic life. 
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RESULT AND DISCUSSION 

 

 

Total Suspended Solids (TSS) 

The TSS values exhibited considerable variability across different sampling stations and collection times, indicating 

geographical and temporal fluctuations in sediment loads and the dynamics of water quality. Geographically, the 

concentrations of TSS in Fig.2 showed significant variations among the sampling locations. Sample Points 3 and 4, 

located in the middle of the stream, consistently showed higher concentrations of Total Suspended Solids (TSS) 

compared to the upstream (Sample Points 1 and 2) and downstream (Sample Points 5 and 6) sites. The observed 

spatial arrangement indicates that sedimentation and erosion in the middle segment of the river are concentrated in 

specific areas, likely caused by human activities such as farming, building, and urbanisation (Baiyin et al., 2024; 

Silva-Gálvez et al., 2024; Yuan et al., 2023). Temporarily, the levels of TSS varied between the morning and 

evening sample sessions. Typically, the concentrations of total suspended solids (TSS) showed a tendency to rise 

during the night-time sample sessions. This could be attributed to the disturbance of sediment and the increased flow 

of water from the nearby land regions that occurred throughout the day (Noor et al., 2023; South & Nazir, 2016; 

Wang & Liu, 2023). The fact that sediment transport processes within the river ecosystem vary during the day 

emphasises the dynamic nature of these processes. It also emphasises the need to consider changes over time when 

assessing water quality. 

 

 
 

Figure 2.  Total suspended solid (TSS) concentration trend. 

 

Elevated TSS (total suspended solids) concentrations can have substantial consequences for the hydrodynamics of 

water streams and the biodiversity of aquatic ecosystems. Excessive sedimentation can hinder water clarity, leading 

to a decrease in the amount of light that can penetrate the water and lowering the ability of aquatic plants to carry 

out photosynthesis (Khonok et al., 2022; Soedjono et al., 2018; Suantara et al., 2020). Consequently, this can disturb 

the habitats at the bottom of the river and modify the natural equilibrium of the river ecosystem. In addition, water 

containing silt can suffocate aquatic environments, such as gravel beds and riffles, which are vital for fish 

reproduction and the habitat of macroinvertebrates. In addition, high levels of total suspended solids (TSS) can lead 

to greater turbidity, which decreases visibility for aquatic creatures and hinders predator-prey interactions (García-

Avila et al., 2023; Rowland et al., 2021; Ural-Janssen et al., 2024). Suspended silt particles can obstruct the 

respiratory organs of fish, disrupt the feeding process of filter-feeding animals, and inhibit the growth of fish 

embryos and larvae. As a result, elevated levels of total suspended solids (TSS) can have a negative impact on the 

diversity of aquatic life, causing a decrease in populations and degradation of the environment over a period (Dory 

et al., 2024; Qiu et al., 2024; Sumantra et al., 2023). 

Multiple reasons can lead to elevated levels of Total Suspended Solids (TSS) in river water, such as soil erosion 

originating from agricultural fields, construction sites, and deforested areas (Wiegers & Larsen, 2024; Zarei, 2020). 

Urban runoff, which includes particles from roads, rooftops, and paved surfaces, can increase the concentration of 

total suspended solids (TSS) in river systems. In addition, natural phenomena such as bank erosion, streambed 

scouring, and the suspension of sediment during periods of high flow can increase the amount of silt in rivers (Darji 

et al., 2022; Nugraha et al., 2020). Human activities, such as clearing land, mining, and inappropriate waste disposal, 

can worsen sedimentation problems by increasing the pace at which soil erodes and silt is carried into bodies of 
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water. Insufficient soil conservation methods, such as inappropriate land management and deforestation, can 

exacerbate sedimentation issues, resulting in diminished water quality and the loss of habitats in river ecosystems 

(Kaown et al., 2023). 

The examination of TSS concentrations in the Tukad Badung River emphasises the fluctuation in sediment loads 

across space and time and the possible consequences of elevated TSS levels on the quality of water and aquatic 

organisms. To tackle sedimentation problems, it is necessary to implement holistic approaches to managing 

watersheds. These approaches should incorporate steps to conserve soil, plan land use effectively, and implement 

erosion control procedures (Darji et al., 2022). By doing so, we may reduce the amount of sediment that is 

transported to water bodies and protect river ecosystems for future generations. 

 

Ammonia 

The levels of ammonia showed noticeable variations in both space and time, indicating the impact of specific 

locations and daily changes in the amount of pollution. Geographically, according to Fig 3, there were significant 

differences in ammonia concentrations among the sampling stations. Elevated concentrations of ammonia were 

regularly detected at the downstream sample points (Sample Points 5 and 6) in comparison to the upstream (Sample 

Points 1 and 2) and midstream (Sample Points 3 and 4) locations. The observed arrangement of locations indicates 

that there are specific sources of pollution, such as industrial waste or urban runoff, that are causing higher levels of 

ammonia in the lower parts of the river. Temporarily, the amounts of ammonia showed variations between the 

morning and evening test sessions. Typically, the levels of ammonia were greater during the evening sampling 

sessions at all sample locations. The diurnal pattern seen can be explained by the heightened biological activity and 

decomposition of organic matter during daylight hours, resulting in an enhanced generation of ammonia and its 

release into the water column (Conley et al., 2009; Ezzati et al., 2023). In addition, lower water flow rates and 

sluggish circumstances in the evening might lead to an increase in ammonia levels and a decrease in the ability to 

dilute it. 

 

 
 

Figure 3.  Ammonia concentration trend. 

 

High levels of ammonia can be harmful to the quality of water and the organisms that live in it. High amounts of 

ammonia are highly hazardous to aquatic organisms, especially fish and invertebrates (Bartelme et al., 2017; Kim et 

al., 2010; Pejman Sereshkeh et al., 2024). It disrupts respiratory activities and can cause harm to the gills, hinder 

growth, and make the organism more susceptible to illnesses. In addition, the presence of high levels of ammonia 

can interfere with the normal functioning of physiological systems in aquatic animals, including osmoregulation and 

metabolic functions (Chen et al., 2024; Gu et al., 2024). This disruption can result in decreased rates of survival and 

reproductive success. In addition, elevated ammonia concentrations can modify the chemical composition of water, 

resulting in changes in pH levels and impacting the cycling of nutrients in aquatic environments. Ammonia 

poisoning can also have an indirect effect on other aquatic creatures by causing disturbances in food webs and 

community dynamics (Astals et al., 2018; Ha et al., 2023; Muscarella et al., 2021). Therefore, increased levels of 

ammonia can have substantial negative impacts on the diversity of aquatic life and the overall health of ecosystems, 

especially in vulnerable regions like spawning grounds and nursery areas. Multiple variables can contribute to 

elevated ammonia concentrations in river water. Industrial discharges, sewage effluents, and agricultural runoff are 

examples of point sources of pollution that can introduce high levels of ammonia into the water stream (Trap et al., 
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2024; Vystavna et al., 2023). Ammonia pollution issues can be worsened by inefficient wastewater treatment 

procedures and incorrect disposal of organic wastes, resulting in concentrated areas of contamination. In addition, 

natural processes such as the decomposition of organic waste and the cycling of nutrients in aquatic settings can 

contribute to the creation of ammonia (Patterson, 2003; Serra et al., 2023; Yates et al., 2022). An overabundance of 

organic materials, such as decomposing plants or animal excrement, can trigger the growth of microorganisms and 

the process of ammonification, resulting in a higher release of ammonia into the water. In addition, the presence of 

still water, decreased water movement, and insufficient amounts of dissolved oxygen can worsen the buildup of 

ammonia and hinder the natural processes that help reduce pollution, thereby aggravating the pollution problem 

even more (Ural-Janssen et al., 2024). It is necessary to implement comprehensive strategies that address both 

specific and diffuse causes of contamination. This includes improving wastewater treatment methods and promoting 

sustainable land use practices to reduce fertiliser inputs and protect river ecosystems for future generations. 

 

Nitrite and Nitrate 

The research uncovers clear regional and temporal patterns in the levels of nitrite and nitrate, which indicate specific 

localised influences and daily variations in nutrient loads. Geographically, the levels of nitrite and nitrate showed 

significant differences among the locations where samples were taken (Fig 4 and Fig 5). Elevated concentrations of 

nitrite and nitrate were regularly detected at the sampling points downstream (Sample Points 5 and 6) in comparison 

to the upstream (Sample Points 1 and 2) and midstream (Sample Points 3 and 4) regions. Specific pollution sources, 

such as agricultural runoff or industrial discharges, have an impact on the lower parts of the river, as indicated by the 

observed spatial gradient. This contributes to higher nutrient levels. Temporally, the levels of nitrite and nitrate 

exhibited variations between the morning and evening sampling sessions. In general, the amounts of both nitrite and 

nitrate were greater during the night-time sampling sessions at all sample stations. Human activities, such as farming 

or urban runoff, introduce additional nutrients into the water during daylight hours, explaining the observed daily 

fluctuation in nutrient levels. This results in an increased concentration of nutrients in the water column. In addition, 

lower water flow rates and stagnant circumstances in the evening can lead to the build-up of nutrients and a decrease 

in the ability to dilute them (Busico et al., 2024; Flynn et al., 2023). 

High levels of nitrite and nitrate in water can have serious consequences for the water's quality and the organisms 

that live in it. Nitrite and nitrate are vital nutrients for plant development (Begam et al., 2024; Sorokin et al., 2012). 

However, when present in excessive amounts, they can lead to eutrophication, algal blooms, and oxygen depletion 

in aquatic habitats. Excessive nitrogen inputs can trigger the growth of algae, resulting in the production of thick 

mats of algae and the eventual depletion of oxygen due to microbial breakdown processes (van Wijk et al., 2024; Yu 

et al., 2014). In addition, elevated levels of nitrites can have a detrimental effect on aquatic creatures, including fish 

and invertebrates, by interfering with their ability to breathe properly and producing a condition called 

methemoglobinemia, which lowers the capacity of their blood to carry oxygen (Carneiro Marques et al., 2023; Ma et 

al., 2016; Silvestrini et al., 2024). Nitrate can have indirect effects on aquatic ecosystems by stimulating algal 

proliferation and modifying water chemistry, resulting in shifts in pH levels and nutrient cycle mechanisms. 

Moreover, increased concentrations of nitrates might pose hazards to human well-being by polluting supplies of 

potable water, especially in regions that depend on underground water reserves. Multiple factors can contribute to 

elevated levels of nitrite and nitrate in river water. Agricultural operations, such as the use of fertilisers and the 

rearing of livestock, can bring increased concentrations of nitrogen compounds into the water stream through 

surface runoff and leaching processes (Arcas-Pilz et al., 2023). Furthermore, the process of urbanisation and 

industrialization can lead to the contamination of nitrite and nitrate due to the release of nitrogen-rich pollutants in 

sewage effluents, industrial discharges, and stormwater runoff. 

Atmospheric deposition and biological nitrogen fixing are natural processes that can also add nitrite and nitrate to 

aquatic habitats. Nevertheless, human activities have greatly increased nitrogen pollution problems, resulting in 

extensive deterioration of water quality and disturbances to ecosystems (Panjwani et al., 2021; Stein & Klotz, 2016; 

Zhou et al., 2024). The combination of ineffective nutrient management strategies, poor waste disposal, and 

insufficient wastewater treatment facilities worsens the problem of nitrite and nitrate pollution. This presents 

significant challenges for river protection and water resource management. Finally, the examination of nitrite and 

nitrate levels in the Tukad Badung River highlights the intricate nature of nitrogen pollution processes and their 

effects on water quality and ecosystems it supports. Well-coordinated approach is needed to address the sources of 

nutrients from both specific locations and diffuse sources (Lavallais & Dunn, 2023). This can be achieved by 

implementing effective nutrient management practices and promoting sustainable land use practices. By doing so, 

we can protect river ecosystems and ensure the availability of clean and healthy water resources for current and 

future generations. 
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Figure 4.  Nitrite concentration trend. 

 

 
 

Figure 5.  Nitrate concentration trend. 

 

Total Phosphate 

The research uncovers noticeable regional and temporal patterns in the levels of total phosphorus, which indicate the 

presence of localised impacts and daily variations in nutrient loads. Geographically, there was substantial variability 

in the levels of total phosphorus among the several locations where we took samples (Fig 6). Downstream sampling 

stations (Sample Stations 5 and 6) consistently exhibited elevated total phosphorus levels relative to upstream 

(Sample Points 1 and 2) and midstream (Sample Points 3 and 4) locations. Specific locations along the river, such as 

agricultural runoff or urban discharges, introduce pollution, as indicated by the observed spatial gradient. This 

pollution causes higher levels of nutrients in the downstream areas of the river. 

Temporarily, the levels of total phosphorus exhibited variations between the morning and evening sample sessions. 

In general, the amounts of total phosphorus were greater during the evening sampling sessions at all sample stations. 

Human activities such as farming or urban runoff introduce additional nutrients into the water during daylight hours, 

explaining the observed daily fluctuation in nutrient levels. This results in an increased concentration of nutrients in 

the water column (Ezzati et al., 2023; Lu et al., 2024; Xu et al., 2018). In addition, lower water flow rates and 

sluggish circumstances in the evening can lead to the accumulation of nutrients and a decrease in the ability to dilute 

them. 

High levels of total phosphorus can have a significant impact on the quality of water and the organisms that live in it 

(Conley et al., 2009; Smith & Myers, 2024). Excessive amounts of total phosphorus, an essential nutrient for the 

growth of algae, can cause eutrophication, algal blooms, and oxygen depletion in aquatic habitats. Elevated 

phosphorus concentrations can trigger the rapid growth of algae, leading to the development of thick mats of algae 

that block sunlight from reaching native plants and decrease the variety of species present (Correll, 1998; Suryawan 
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et al., 2024; Zhang et al., 2023). Furthermore, the proliferation of algal blooms can result in a reduction in oxygen 

levels due to the breakdown of organic matter by microorganisms. This can create hypoxic conditions that are 

detrimental to aquatic animals (Hu et al., 2023). 

In addition, elevated quantities of total phosphorus can disrupt the chemical composition of water, resulting in 

fluctuations in pH levels and the functioning of nutrient cycle systems. The acidification of water bodies can have 

detrimental effects on aquatic creatures, compromising their metabolic functions and reproductive success (Liu et 

al., 2024; Rey-Martínez et al., 2024b). Additionally, phosphorus pollution can have an indirect effect on human 

health by contaminating sources of drinking water, especially in regions that depend on surface water for their 

supply of safe drinking water (Panasiuk, 2012; Proskynitopoulou et al., 2024; Silva et al., 2023). Multiple variables 

can contribute to elevated levels of total phosphorus in river water. Agricultural practices, such as the application of 

fertilisers and the rearing of livestock, can lead to increased levels of phosphorus in water bodies due to surface 

runoff and leaching (Koulouri et al., 2024; Zhu et al., 2023). In addition, the process of urbanisation and 

industrialization can lead to the contamination of phosphorus due to the release of phosphorus-rich pollutants in 

sewage effluents, industrial discharges, and stormwater runoff. 

 

 
 

Figure 6. Total Phosphate concentration trend. 

 

Natural processes, such as the weathering of phosphorus-containing rocks and the resuspension of silt, can also 

influence phosphorus inputs in aquatic ecosystems. Nevertheless, human activities have greatly increased the 

problem of phosphorus pollution, resulting in extensive deterioration of water quality and disturbances to 

ecosystems. Inefficient nutrient management practices, inappropriate waste disposal, and inadequate wastewater 

treatment facilities exacerbate phosphorus contamination difficulties (Galeano et al., 2023; Galligan & McClanahan, 

2024; Ruijter et al., 2016). These factors provide considerable challenges for river conservation and water resource 

management. The examination of overall phosphorus levels in the Tukad Badung River highlights the intricate 

nature of nutrient contamination patterns and their effects on the quality of water and aquatic ecosystems. It is 

necessary to implement comprehensive management strategies that address both specific and diffuse sources of 

contamination. This includes improving nutrient management and promoting sustainable land use practices to 

protect river ecosystems and ensure the availability of clean and healthy water resources for current and future 

generations. 

 

Potential of Nutrient Recovery from Streamwater 

This study provides valuable insights that can support the initiative of nutrient recovery from stream water as part of 

a circular economy model for wastewater treatment. By analysing the spatial and temporal variations of nutrient 

pollutants along the Tukad Badung River, the study identifies opportunities for the sustainable management and 

utilisation of these nutrients to minimise environmental impact and promote resource efficiency. Firstly, the study 

highlights the significant concentrations of nutrients, including nitrogen and phosphorus, in the river water. These 

nutrients, if properly recovered, can serve as valuable resources for various applications, such as agricultural 

fertilisers, bioenergy production, and aquaculture feed (Hofmann et al., 2024; Winkler & Straka, 2019; Xiao et al., 

2016). By implementing technologies for nutrient recovery, such as nutrient adsorption, precipitation, and biological 

processes, wastewater treatment facilities can extract these nutrients from stream water and convert them into 
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valuable products, thereby closing the nutrient loop and reducing dependency on synthetic fertilizers and other 

external inputs (Lin et al., 2016; Marcińczyk et al., 2022; Rey-Martínez et al., 2024b; Sari et al., 2023; Xiao et al., 

2016). Moreover, the study identifies the spatial distribution of nutrient hotspots along the river course, indicating 

potential locations for nutrient recovery facilities. By strategically locating nutrient recovery plants near areas with 

high nutrient concentrations, such as urban centres or industrial zones, wastewater treatment operators can optimise 

resource recovery and minimise transportation costs associated with nutrient extraction and distribution (Soedjono et 

al., 2017; Sumantra et al., 2022; Wijaya et al., 2017). Furthermore, the temporal variations in nutrient concentrations 

revealed by the study underscore the dynamic nature of nutrient pollution in river ecosystems. By implementing 

real-time monitoring systems and adaptive management strategies, wastewater treatment facilities can adjust nutrient 

recovery processes in response to fluctuations in nutrient loads, maximising resource recovery efficiency and 

minimising environmental impact. Overall, this study provides essential data and insights that can inform the 

development and implementation of nutrient recovery initiatives as part of a circular economy model for wastewater 

treatment (Antunes et al., 2022; Sauvé et al., 2021; Slootweg, 2020; Zvimba et al., 2021). These initiatives, which 

recover valuable nutrients from stream water and convert them into reusable products such as fertilizers or 

bioenergy, can contribute to resource conservation, environmental protection, and sustainable development in the 

Tukad Badung River watershed and beyond. 

 

 

CONCLUSION 

 

 

The findings of this study underscore the urgent need for effective management strategies to address nutrient 

pollution in the Tukad Badung River. Elevated levels of total suspended solids, ammonia, nitrite, nitrate, total 

phosphorus, and total nitrogen indicate significant degradation of water quality, posing threats to aquatic ecosystems 

and human health. Anthropogenic activities, including agriculture, urbanisation, and industrialization, are major 

contributors to nutrient pollution, exacerbating environmental degradation and ecosystem disruptions. To mitigate 

these challenges, comprehensive watershed management approaches are essential, incorporating measures to reduce 

nutrient inputs from point and non-point sources, improve wastewater treatment practices, and promote sustainable 

land use practices. Additionally, increased monitoring and enforcement of water quality regulations are necessary to 

ensure the protection and restoration of the Tukad Badung River ecosystem for present and future generations. 
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