Vol. 10 (2): 389-400 (2020)

A COMPARATIVE STUDY FOR SODIUM BOROHYDRIDE DEHYDROGENATION AND ELECTROOXIDATION ON CERIUM AND COBALT CATALYSTS

Tülin Avci Hansu^{1,2}, Aykut Çaglar¹, Omer Sahin², Hilal Kivrak^{1*}

¹Van Yuzuncu Yil University, Faculty of Engineering, Department of Chemical Engineering, Van, 65000, Turkey; ²Siirt University, Faculty of Engineering, Department of Chemical Engineering, Siirt, 56100, Turkey;

*Corresponding Author Hilal Kivrak, e-mail: hilalkivrak@gmail.com; hilalkivrak@yyu.edu.tr;

Received April 2020; Accepted May 2020; Published June 2020;

DOI: https://doi.org/10.31407/ijees10.220

ABSTRACT

In the present study, Co/CNT and Ce/CNT catalysts are prepared via sodium borohydride (NaBH₄) reduction method. Co/CNT and Ce/CNT catalysts are examined to the dehydrogenation and electrooxidation of NaBH₄. NaBH₄ dehydrogenation activities of these Co/CNT and Ce/CNT catalysts are performed in alkaline environment. 5% Co/CNT catalyst exhibits superior hydrogen evolution compared with other catalysts. Activation energy is calculated using Arrhenius equation. Initial rate for this catalyst is found as 1700 ml H₂ g⁻¹_{cat} min⁻¹. As a result of the kinetic calculations, the activation energy of the catalyst is calculated as 44,68775 kj/mol. The degree of reaction (n) is found to be 0.5 by trial and error. In conclusion, 5% Co/CNT catalyst is a promising catalyst for hydrogen production from NaBH₄. Cyclic voltammetry (CV) analysis is utilized to examine the electrochemical activity of the catalysts for NaBH₄ electrooxidation. 0.1% Co/CNT catalyst has 0.38 mA cm⁻² (3181 mA mg⁻¹ Co) specific activity.

Keywords: Dehydrogenation, electrooxidation, Ce, Co, Sodium borohydride